(x^4+x^2-2)*(y^2-2x)=0

Simple and best practice solution for (x^4+x^2-2)*(y^2-2x)=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (x^4+x^2-2)*(y^2-2x)=0 equation:


Simplifying
(x4 + x2 + -2)(y2 + -2x) = 0

Reorder the terms:
(-2 + x2 + x4)(y2 + -2x) = 0

Reorder the terms:
(-2 + x2 + x4)(-2x + y2) = 0

Multiply (-2 + x2 + x4) * (-2x + y2)
(-2(-2x + y2) + x2(-2x + y2) + x4(-2x + y2)) = 0
((-2x * -2 + y2 * -2) + x2(-2x + y2) + x4(-2x + y2)) = 0
((4x + -2y2) + x2(-2x + y2) + x4(-2x + y2)) = 0
(4x + -2y2 + (-2x * x2 + y2 * x2) + x4(-2x + y2)) = 0

Reorder the terms:
(4x + -2y2 + (x2y2 + -2x3) + x4(-2x + y2)) = 0
(4x + -2y2 + (x2y2 + -2x3) + x4(-2x + y2)) = 0
(4x + -2y2 + x2y2 + -2x3 + (-2x * x4 + y2 * x4)) = 0

Reorder the terms:
(4x + -2y2 + x2y2 + -2x3 + (x4y2 + -2x5)) = 0
(4x + -2y2 + x2y2 + -2x3 + (x4y2 + -2x5)) = 0

Reorder the terms:
(4x + x2y2 + -2x3 + x4y2 + -2x5 + -2y2) = 0
(4x + x2y2 + -2x3 + x4y2 + -2x5 + -2y2) = 0

Solving
4x + x2y2 + -2x3 + x4y2 + -2x5 + -2y2 = 0

Solving for variable 'x'.

The solution to this equation could not be determined.

See similar equations:

| 10x+15=5x+45 | | f(x)=2x^3+-8x | | -864+8= | | 3x-4x+2y= | | (4z+3)(7-z)=0 | | 4(-216)+2(4)= | | Ln(x)+0.02x=0.49 | | 3x-4+2x=2x+10 | | 7a+4a-4a= | | 195/220 | | Lnx+0.02x=0.49 | | 16x+13=6x+253 | | s*6-20=142 | | a+20+3a+a+5=180 | | 4(-6)3= | | 6m-12=90 | | 2-x=5x+1 | | 4(-6)3+2(4)= | | (-5)-8i= | | 2x(12-4x)=0 | | 2x-10=6x+3 | | |1-2/3x|=5 | | (6-2)x(10-6)= | | 11n+7=3n+11 | | 41*x-26*y=1 | | 4x+2=10x+4 | | 2(5x+3)=5x-1 | | -5+64= | | 77-(3x+15)=3(x+9)+x | | fx=-x+5 | | (2x+5)(2x+7)-35=45 | | fx=x^2-2 |

Equations solver categories